Predicting PROTAC properties
In recent decades, molecules that co-opt the ubiquitination system to degrade target proteins have opened up new drug targets by eliminating the need for an active site or a binding pocket. Proteolysis-targeting chimeras, or PROTACs, work by bringing together a drug target protein and a ubiquitin ligase. If it works as intended, PROTAC-induced proximity leads to target ubiquitinated and proteasomal degradation, removing the target from the cell. But sometimes the process stalls out.
“Sometimes binding can happen, but ubiquitination cannot happen,” said Nan Bai, a scientist at Amgen. Bai and colleagues sought to predict this undesirable outcome by modeling the many conformations that a multiprotein structure can adopt, in a workflow in the Journal of Biological Chemistry.
PROTAC efficacy depends on two successful events. First, the drug must link its target protein with a ubiquitin ligase substrate receptor into what often is called a ternary complex; second, it must bring the ternary complex into a larger ubiquitin ligase holoenzyme where ubiquitin can be transferred onto a lysine in the target protein.
According to Bai, more effort has focused on predicting ternary complex formation, in part because it is easier. Her work focuses on the second step, triggering degradation. Her team used ensemble modeling to determine the most likely collection of conformations that a target PROTAC–ligase complex could adopt. They fit the group of structures that were most energetically favorable into the five most common conformations that a multiple-protein E3 ligase holoenzyme can adopt. In the resulting array of potential complexes, they searched for surface lysines eligible for ubiquitination on a target within reach of the holoenzyme. They scored each potential structure, deeming a complex unproductive if it predicted a steric clash or no lysines within the enzyme’s active zone. Then they predicted a compound’s overall ubiquitination efficiency based on the percentage of ensemble structures classed as productive.
To validate this model, the researchers tested it on PROTAC–target pairs reported to form productive complexes with published structures and found good agreement. The model also suggested an explanation for perplexing previous results where a family of closely related kinases bound comparably to a PROTAC but showed dramatically different degradation rates. Among the poorly degraded targets, the team found a smaller proportion of possibly productive holoenzyme conformations. Collaborators at Promega conducted cellular assays of target degradation that further bolstered support for the model.
Sara Humphreys is a principal scientist at Amgen and senior author on the paper. “Before embarking on this work, a priori for an uncharacterized binding site on a protein, you really wouldn’t know” whether it would function as a PROTAC, she said.
While it provides useful information, Humphreys said, the model has not completely taken over the drug developers’ conversations about which molecules should advance in preclinical development. Although ubiquitination of a target is essential, it is not all there is to PROTAC efficacy; a target’s rate of synthesis, a complex’s proteasome recruitment, and the dynamics of ubiquitin chain elongation and deubiquitination can all affect whether a target is destroyed. In the future, other tools may tackle these variables.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Opinions
Opinions highlights or most popular articles
Where do we search for the fundamental stuff of life?
Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.
Scientists around the world report millions of new discoveries every year
Science is a collaborative endeavor, and international teams have contributed to a huge rise in scientific output.
Who decides when a grad student graduates?
Ph.D. programs often don’t have a set timeline. Students continue with their research until their thesis is done, which is where variability comes into play.
Redefining ‘what’s possible’ at the annual meeting
The ASBMB Annual Meeting is “a high-impact event — a worthwhile investment for all who are dedicated to advancing the field of biochemistry and molecular biology and their careers.”
鶹ýɫƬ impressions of water as cuneiform cascade*
Inspired by "the most elegant depiction of H2O’s colligative features," Thomas Gorrell created a seven-tiered visual cascade of Sumerian characters beginning with the ancient sign for water.
Water rescues the enzyme
“Sometimes you must bend the rules to get what you want.” In the case of using water in the purification of calpain-2, it was worth the risk.