Â鶹´«Ã½É«ÇéƬ

Journal News

Innovative approach opens the door to COVID nanobody therapies

Joshua A. Krisch
By Joshua A. Krisch
April 15, 2023

COVID is not yet under control. Despite a bevy of vaccines, monoclonal antibodies, and antivirals, the virus continues to mutate and elude us. One solution that scientists have been exploring since the early days of the pandemic may come in the form of tiny antibodies which target various parts of the SARS-CoV-2 spike protein.

In a new study in the , researchers describe a less expensive way to isolate and identify these so-called nanobodies. The findings will make it easier for scientists around the world to try their hand at discovering nanobodies that target SARS-CoV-2 or other viruses. “Our method is more straightforward and less expensive than existing techniques,” says Rockefeller’s . “You do need a llama, but that — along with all the most complicated parts of the process — can be outsourced.”  

The authors have already used this optimized method to identify multiple nanobodies that appear to work against key variants of the virus, including omicron. “COVID is clearly going to be a problem for some time,” Rout says. “We show that many of the nanobodies we have identified with this method target variants-of-concern, so they have real therapeutic potential.”

Nanobody novelty

Nanobodies may work where larger antibodies fail, in part due to their compact size. Studies have shown that nanobodies can squeeze into parts of the SARS-CoV-2 virus that larger antibodies cannot reach. Nanobodies also have unusually long shelf-lives, cost very little to mass-produce and, because of their unique physical properties, could theoretically be inhaled.

Camelids such as llamas naturally produce nanobodies when exposed to a virus, and Rout and colleagues have developed enormous libraries of promising SARS-CoV-2 nanobodies by giving a small dose of COVID protein to llamas (which produce nanobodies in response, much as humans produce antibodies in response to a vaccine). After taking small blood samples from the llamas and sequencing the nanobody DNA, the scientists later transfer key genes to bacteria which, in turn, produce many more nanobodies for lab analysis. 

But screening these nanobody libraries to see how well they work (and which variants they work against) can be time-consuming and expensive. Rout and colleagues have long relied on the “mass spectrometry” technique, which works extraordinarily well but requires substantial expertise to perform and expensive equipment. They wondered whether a recently discovered “yeast display method”, which was potentially far less expensive and simpler, could also effectively sort through their nanobody library.

Rout, in collaboration with Rockefeller’s , started by first optimizing the yeast display method. (The two heads-of-lab took the unusual step of performing most of the benchwork themselves). They then used their optimized method to screen a library of nanobodies that they had previously screened with the mass spectrometry technique. They found that their version of the yeast display method not only identified many of the same nanobody candidates as the other approach, but also identified numerous other candidates that they had missed.

“The method is not ours,” Cross clarifies. “But we made it simpler.”

Toward nanobody therapy

The relatively simple and low-cost procedure described in the paper could empower laboratories in low-resource areas to generate nanobodies against SARS-CoV-2, as well as other viruses. “A researcher anywhere in the world, with fairly limited resources, could use this technique,” Rout says. “The llama-related stuff could be FedEx-ed from North America.” 

For COVID, the long-term goal is that techniques such as these will lower the bar for entry into nanobody research and ultimately produce therapies that prevent infection. “How we’d make the therapeutic is unestablished, as yet,” Cross says. “The specificity is there and the activity is there, but we don’t have a drug yet. It’d be nice if we did. Hopefully someday.”

Because with COVID now transitioning to an endemic disease, novel methods for preventing the infection cannot come soon enough. “New variants become prevalent by evading the immune system,” Cross says. “It’s important to have a fast way to find new nanobodies targeting the variants.”

This article was first published by The Rockefeller University.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Joshua A. Krisch
Joshua A. Krisch

Joshua A. Krisch is a science writer for Rockefeller University.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Elucidating how chemotherapy induces neurotoxicity
Award

Elucidating how chemotherapy induces neurotoxicity

Dec. 2, 2024

Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
News

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks

Nov. 30, 2024

This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.

The decision to eat may come down to these three neurons
News

The decision to eat may come down to these three neurons

Nov. 28, 2024

The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.

Curiosity turned a dietitian into a lipid scientist
Award

Curiosity turned a dietitian into a lipid scientist

Nov. 27, 2024

Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

From receptor research to cancer drug development: The impact of RTKs
Award

From receptor research to cancer drug development: The impact of RTKs

Nov. 26, 2024

Joseph Schlessinger will receive the ASBMB Herbert Tabor Research Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.