Â鶹´«Ã½É«ÇéƬ

Feature

Spatial transcriptomics sharpens distinctions between brains

Laurel Oldach
Dec. 15, 2022

Single-cell RNA sequencing is becoming a workhorse of transcriptomics, giving researchers details on transcription in individual cells and a sense of both tissue-level heterogeneity and how many cell types are present. As powerful as single-cell techniques are, they pose a challenge in that tissues must be dissociated to be analyzed. This can cost contextual information in tissues where a cell’s position is important.

In the brain, for example, many functions depend on interactions between adjacent cells. Based on single-cell sequencing, researchers have identified multiple types of both inhibitory and excitatory neurons in the brain and dozens of subtypes of glia, or nonneuronal cells. But to learn more about how position affects function and how this diversity of cell types arises, researchers need more information about which cells are where — a question for spatial transcriptomics.

There are several ways to assay the transcriptome without losing spatial information. Researchers can microdissect tiny, defined portions of tissues for RNA sequencing assays; they can capture nucleic acids in a known, spatially defined pattern before single-cell sequencing; or they can hybridize fluorescent probes to RNA and image it in thin tissue sections, sometimes after expanding the tissue. Scientists have struggled to strike a balance between spatial resolution and the number of transcripts they can assay at once.

In contrast to in situ hybridization experiments like this one, which shows where in the mouse brain a single transcript is located, spatial transcriptomics experiments can give researchers information about the whereabouts of many transcripts at once.
In contrast to in situ hybridization experiments like this one, which shows where in the mouse brain a single transcript is located, spatial transcriptomics experiments can give researchers information about the whereabouts of many transcripts at once.

In , a Harvard team used a multiplexed in situ hybridization technique called MERFISH, which assays tissue slices for a selection of thousands of genes, to identify dozens of cell types in multiple regions of the mouse and human cortexes. The researchers spotted numerous interesting distinctions between the two species; for example, the human cortex is composed of a higher proportion of glia and inhibitory neurons than the mouse cortex. Human brains were also much more apt to show soma, or cell body, interactions between distinct cell types, particularly neurons and glial cells, suggesting more complex contact-mediated relationships between these cells.

In in Science, researchers based at Yale and the University of Wisconsin–Madison, compared human, macaque, chimpanzee and marmoset brain regions responsible for cognition, identifying subtle differences in important genes, such as a dopamine-producing enzyme, in certain cell types by region.

These techniques have yet to capture single cells in space. However, researchers are developing ways to get closer. in the journal Nature Biotechnology this year by a research team from across Europe merges expression signatures from single-cell RNA sequencing experiments with spatial transcriptomic location from a sparse subset of these transcripts. By combining the data, the method can determine which classes of cells exist in each location and which type most likely occupies a given location. at Harvard are working on ways to determine likely boundaries between cells based on their transcriptomes.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Related articles

From the Journals: JBC
Ken Farabaugh
Cities under the sea
Marissa Locke Rottinghaus
The perfect storm
Marissa Locke Rottinghaus
Best of BMB 2022
Laurel Oldach

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Opinions

Opinions highlights or most popular articles

At a career crossroads: Exploring postdoc, faculty and industry paths
Essay

At a career crossroads: Exploring postdoc, faculty and industry paths

Sept. 19, 2024

“At the crossroads of an academic career, postdocs find ourselves grappling with a challenging decision … about defining our trajectory in academia and shaping the impact we want to have in the academic community.â€

How do you help a biochemist find a career path?
Essay

How do you help a biochemist find a career path?

Sept. 18, 2024

Industry, academia and the ASBMB join forces to introduce students job options in the sciences with a panel, networking and cheese.

'Don’t be afraid to take a different path'
Profile

'Don’t be afraid to take a different path'

Sept. 11, 2024

In 2016, MOSAIC scholar Rebecca Ann Faulkner paused her career for four years to focus on her family, a decision she believes made her a more effective and empathetic scientist.

The perverse legacy of participation in human genomic research
Essay

The perverse legacy of participation in human genomic research

Sept. 7, 2024

The story of how one person became the majority source of DNA for the Human Genome Project encapsulates 20th-century researchers’ attitudes toward donor consent, the author says.

Announcing the winners of the Â鶹´«Ã½É«ÇéƬ Motifs bioart competition
Contest

Announcing the winners of the Â鶹´«Ã½É«ÇéƬ Motifs bioart competition

Sept. 3, 2024

The 12 winning works of art to be featured in the 2025 ASBMB calendar were selected from 37 entries received from scientists in both academia and industry at all career stages with submissions coming from as far away as Pakistan and Brazil.

The fourth third of my career: Living the dream
Essay

The fourth third of my career: Living the dream

Aug. 28, 2024

After a few decades of being a professor, Jonathan Monroe thought it would be fun to return to the life of a postdoc after retiring. Here’s how he did it.