Â鶹´«Ã½É«ÇéƬ

News

AI harnesses tumor genetics to predict treatment response

Miles Martin
By Miles Martin
Feb. 18, 2024

In a groundbreaking study published on January 18, 2024, in Cancer Discovery, scientists at University of California San Diego School of Medicine leveraged a machine learning algorithm to tackle one of the biggest challenges facing cancer researchers: predicting when cancer will resist chemotherapy.

All cells, including cancer cells, rely on complex molecular machinery to replicate DNA as part of normal cell division. Most chemotherapies work by disrupting this DNA replication machinery in rapidly dividing tumor cells. While scientists recognize that a tumor's genetic composition heavily influences its specific drug response, the vast multitude of mutations found within tumors has made prediction of drug resistance a challenging prospect.

Cervical cancer, shown here at the cellular level, frequently resists treatment. The researchers’ machine learning algorithm could help scientists better understand why this and other forms of cancer resist chemotherapy.
National Cancer Institute
Cervical cancer, shown here at the cellular level, frequently resists treatment. The researchers’ machine learning algorithm could help scientists better understand why this and other forms of cancer resist chemotherapy.

The new algorithm overcomes this barrier by exploring how numerous genetic mutations collectively influence a tumor's reaction to drugs that impede DNA replication. Specifically, they tested their model on cervical cancer tumors, successfully forecasting responses to cisplatin, one of the most common chemotherapy drugs. The model was able to identify tumors at most risk for treatment resistance and was also able to identify much of the underlying molecular machinery driving treatment resistance.

"Clinicians were previously aware of a few individual mutations that are associated with treatment resistance, but these isolated mutations tended to lack significant predictive value. The reason is that a much larger number of mutations can shape a tumor's treatment response than previously appreciated," Trey Ideker, PhD, professor in Department of Medicine at UC San Diego of Medicine, explained. "Artificial intelligence bridges that gap in our understanding, enabling us to analyze a complex array of thousands of mutations at once."

One of the challenges in understanding how tumors respond to drugs is the inherent complexity of DNA replication — a mechanism targeted by numerous cancer drugs.

“Hundreds of proteins work together in complex arrangements to replicate DNA," Ideker noted. "Mutations in any one part of this system can change how the entire tumor responds to chemotherapy.”

The researchers focused on the standard set of 718 genes commonly used in clinical genetic testing for cancer classification, using mutations within these genes as the initial input for their machine learning model. After training it with publicly accessible drug response data, the model pinpointed 41 molecular assemblies — groups of collaborating proteins — where genetic alterations influence drug efficacy.

“Cancer is a network-based disease driven by many interconnected components, but previous machine learning models for predicting treatment resistance don’t always reflect this,” said Ideker. "Rather than focusing on a single gene or protein, our model evaluates the broader biochemical networks vital for cancer survival."

After training their model, the researchers put it to the test in cervical cancer, in which roughly 35% of tumors persist after treatment. The model was able to accurately identify tumors that were susceptible to therapy, which were associated with improved patient outcomes. The model also effectively pinpointed tumors likely to resist treatment.

Further still, beyond forecasting treatment responses, the model helped shed light on its decision-making process by identifying the protein assemblies driving treatment resistance in cervical cancer. The researchers emphasize that this aspect of the model — the ability to interpret its reasoning — is key to the model’s success and also for building trustworthy AI systems.

"Unraveling an AI model's decision-making process is crucial, sometimes as important as the prediction itself," said Ideker. "Our model's transparency is one of its strengths, first because it builds trust in the model, and second because each of these molecular assemblies we’ve identified becomes a potential new target for chemotherapy. We’re optimistic that our model will have broad applications in not only enhancing current cancer treatment, but also in pioneering new ones."

This article was originally published on the UC San Diego website. You can read the original .

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Miles Martin
Miles Martin

Miles Martin is a science communicator and senior communications and media relations manager at UC San Diego Health Sciences. He holds a master’s degree in science communication from the University of Edinburgh and a bachelor’s degree in biology from the University of Rhode Island.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

'You can't afford to be 15 years behind the parasite'
Award

'You can't afford to be 15 years behind the parasite'

Dec. 3, 2024

David Fidock will receive the Alice and C.C. Wang Award in Â鶹´«Ã½É«ÇéƬ Parasitology at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Elucidating how chemotherapy induces neurotoxicity
Award

Elucidating how chemotherapy induces neurotoxicity

Dec. 2, 2024

Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
News

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks

Nov. 30, 2024

This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.

The decision to eat may come down to these three neurons
News

The decision to eat may come down to these three neurons

Nov. 28, 2024

The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.

Curiosity turned a dietitian into a lipid scientist
Award

Curiosity turned a dietitian into a lipid scientist

Nov. 27, 2024

Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.