Assessing the risk of excess folic acid intake
It is well established that folic acid supplementation can significantly reduce the risk of birth defects, including neural tube defects like spina bifida, the most common birth defect of the central nervous system and the second most common of all structural birth defects. More than 80 nations, including the U.S. 25 years ago, have established mandated folic acid food fortification programs, which have been successful.
“However, there is a lack of research on whether excessive folic acid intake has the potential to harm human beings,” said co-corresponding author, , William T. Butler, M.D., Distinguished Chair Professor in the and the departments of , and at Baylor College of Medicine.
There are reports of adverse effects associated with high folate intake in humans. In this study published in the journal , Finnell and his colleagues investigated in an animal model the potential effect of folic acid supplementation on DNA mutation rates and other genetic modifications such as whole genome methylation, which can change how much of any given gene product gets expressed in cells.
The animals received one of three folic-acid-supplemented diets: folic acid low, folic acid control and folic acid high. “Compared to the mutation frequency of the folic acid-control diet group, that of the folic acid-low diet group increased two-fold and the folic acid-high diet group increased 1.8 fold,” Finnell said.
The researchers found that DNA repair genes were significantly hypermethylated in the folic acid-high diet, suggesting that excess folic acid supplementation may affect the mutation rate by reducing the expression of DNA repair genes and consequently impairing DNA repair activity. Understanding these mechanisms requires further investigation.
“The effects of high- or low-folic acid diets should be confirmed in human population in future studies,” Finnell said. “Our data supports that folic acid supplementation should be restricted to an ideal benefit range. What we have here is a “Goldilocks Effect”: Too little or too much of a good thing (folic acid) may not be such a good thing.”
This article first appeared on the Baylor College of Medicine news site.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Elucidating how chemotherapy induces neurotoxicity
Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Where do we search for the fundamental stuff of life?
Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.
UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.
The decision to eat may come down to these three neurons
The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.
Curiosity turned a dietitian into a lipid scientist
Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
From receptor research to cancer drug development: The impact of RTKs
Joseph Schlessinger will receive the ASBMB Herbert Tabor Research Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.