Chocolate’s secret ingredient
Whether baked as chips into a cookie, melted into a sweet warm drink or molded into the shape of a smiling bunny, chocolate is one of the world's .
Even the biggest chocolate lovers, though, might not recognize what this ancient food has in common with kimchi and kombucha: its flavors are due to fermentation. That familiar chocolate taste is thanks to tiny microorganisms that help transform chocolate's raw ingredients into the much-beloved rich, complex final product.
In labs from Peru to Belgium to Ivory Coast, self-proclaimed are working to understand just how fermentation changes chocolate's flavor. Sometimes we create artificial fermentations in the lab. Other times we take cacao bean samples from real fermentations "in the wild." Often, we make our experimental batches into chocolate and ask a few lucky volunteers to taste it and tell us what flavors they detect.
After decades of running tests like this, researchers have solved many of the mysteries that govern cacao fermentation, including which microorganisms participate and how this step governs chocolate flavor and quality.
From seed pod to chocolate bar
The food you know as chocolate starts its life as the seeds of growing directly from the trunk of the Theobroma cacao tree. It looks like something Dr. Seuss would have designed. But as long as had figured out a multi-step process to transform these giant seed pods into an edible treat.
First, workers crack the brightly colored fruit open and scoop out the seeds and pulp. The seeds, now called "beans," cure and drain over the course of three to 10 days before drying under the Sun. The dry beans are roasted, then crushed with sugar and sometimes dried milk you can't distinguish the particles on your tongue. At this point, the chocolate is ready to be fashioned into bars, chips or confections.
It's during the curing stage that . Chocolate's complex flavor consists of , many of which are generated during fermentation. Fermentation is the process of improving the qualities of a food through the controlled activity of microbes, and it allows the bitter, otherwise tasteless cacao seeds to .
Microorganisms at work
Cacao fermentation is a multi-step process. Any compound microorganisms produced along the way that changes the taste of the beans will also change the taste of the final chocolate.
The first fermentation step may be familiar to home brewers, because it involves yeasts – some of them the . Just like the yeast in your favorite brew, yeast in a cacao fermentation produces alcohol by digesting the sugary pulp that clings to the beans.
This process generates fruity-tasting molecules called esters and floral-tasting fusel alcohols. These compounds soak into the beans and are later present in the finished chocolate.
As the pulp breaks down, oxygen enters the fermenting mass and the . These bacteria are known as acetic acid bacteria because they convert the alcohol generated by the yeast into acetic acid.
The acid soaks into the beans, causing biochemical changes. The sprouting plant dies. Fats agglomerate. Some enzymes break proteins down into smaller peptides, which become very "chocolatey"-smelling during the subsequent roasting stage. Other enzymes break apart the , . As a result, contrary to its reputation, most chocolate contains very few polyphenols, or even none at all.
All the reactions kicked off by acetic acid bacteria have a major impact on flavor. These acids encourage the degradation of heavily astringent, deep purple polyphenol molecules into milder-tasting, brown-colored chemicals called o-quinones. Here is where cacao beans turn from bitter-tasting to rich and nutty. This flavor transformation is accompanied by a color shift from reddish-purple to brown, and it is the reason the chocolate you're familiar with is brown and not purple.
Finally, as acid slowly evaporates and sugars are used up, other species – including – take over.
As vital as microbes are to the chocolate-making process, sometimes organisms can ruin a fermentation. is associated with compounds that lead to rancid, cheesy flavors.
Terroir of a place and its microbes
Cacao is a wild fermentation – farmers rely on natural microbes in the environment to create unique, local flavors. This phenomenon is known as "terroir": the characteristic flair imparted by a place. In the same way that grapes take on regional terroir, these wild microbes, combined with each farmer's particular process, confer terroir on beans fermented in each location.
Market demand for these . Makers of gourmet, small-batch chocolate hand-select beans based on their distinctive terroir in order to produce chocolate with an impressive range of flavor nuances.
If you've experienced chocolate only in the form of a bar you might grab near the grocery store checkout, you probably have little idea of the range and complexity that truly excellent chocolate can exhibit.
[Over 100,000 readers rely on The Conversation's newsletter to understand the world. .]
A bar from Akesson's Madagascar estate may be reminiscent of raspberries and apricots, while Canadian chocolate-maker Qantu's wild-fermented Peruvian bars taste like they've been soaked in Sauvignon Blanc. Yet in both cases, the bars contain nothing except cacao beans and some sugar.
This is the power of fermentation: to change, convert, transform. It takes the usual and make it unusual – thanks to the magic of microbes.
, Ph.D. Candidate in Food Science,
This article is republished from under a Creative Commons license. Read the .
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Elucidating how chemotherapy induces neurotoxicity
Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Where do we search for the fundamental stuff of life?
Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.
UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.
The decision to eat may come down to these three neurons
The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.
Curiosity turned a dietitian into a lipid scientist
Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
From receptor research to cancer drug development: The impact of RTKs
Joseph Schlessinger will receive the ASBMB Herbert Tabor Research Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.