鶹ýɫƬ

News

There’s more to blue cheese than just the stench

Max Esterhuizen
By Max Esterhuizen
July 21, 2024

Marbled veins of blue line the otherwise antique white surface.

As you approach, the pungent smell fills your nostrils, akin to gym socks for some.

But there’s far more to blue cheese than just the stink. The marbled veins of blue, which are edible Penicilliummolds, produce compounds with antifungal, antibacterial, and other biological properties in high doses also known as natural products.

Sydney Johnson (at left) and Pablo Sobrado found a way to synthesize on a large scale a naturally occurring compound that hasn’t previously been used for antibacterial applications.
Max Esterhuizen for Virginia Tech
Sydney Johnson (at left) and Pablo Sobrado found a way to synthesize on a large scale a naturally occurring compound that hasn’t previously been used for antibacterial applications.

Virginia Tech researchers found a new, efficient way to synthesize some of these beneficial blue cheese compounds in a way that avoids the use of harmful chemicals. Previously, the synthesization of these compounds was either extremely low in yield or required the use of harmful or dangerous chemicals.

“This discovery explains the mechanism behind a new reaction in our field, filling a knowledge gap,” said Sydney Johnson Ph.D. ’24, the lead author who earned her doctorate in biochemistry.

Antibacterial resistance has become a growing problem for society, which was caused by the overuse of natural products used on the market for decades, Johnson said.

By finding a way to synthesize on a large scale a naturally occurring compound that hasn’t previously been used for antibacterial applications, Virginia Tech researchers were able to evade the existing antibacterial resistances.

“We work with an enzyme that can help create a natural product that has a unique structure that would make it very difficult for pathogens to become resistant,” Johnson said. “Existing pathogens would have to evolve to be resistant to this new compound.”

The paper was .

This publication lays the foundation to utilize the enzyme to synthesize the natural products,” Sydney Johnson said.
Max Esterhuizen for Virginia Tech
"This publication lays the foundation to utilize the enzyme to synthesize the natural products,” Sydney Johnson said.

“I like to train innovative scientists that work on trying to move the science forward by developing projects that move the entire field forward,” said Pablo Sobrado, professor of biochemistry who leads the Sobrado Lab and is also a researcher on the paper. “Sydney achieved that with this research.”

Enzymes are proteins that help speed up chemical reactions. For their experiment, researchers used an enzyme that produces something called roquefortine L. Parts of its chemical structure are biologically active, which means that it can have beneficial properties such as antimicrobial activities.

In addition, the production of roquefortine L is central to the production of other molecules called glandiclone, melegranin, and oxaline, which have been shown to have broad antimicrobial properties and promising anticancer effects against human breast and leukemia cancer cells.

This enzyme attaches two hydroxyl groups to a nitrogen atom, which are functional groups found in sugars and alcohols. A hydroxyl group consists of one hydrogen and one oxygen atom. Through a complex chemical process, the hydroxyl groups then develop an entirely different functionality.

“This has not been studied in detail before, and Sydney showed how the enzyme holds on first to the product that has the one hydroxyl group, attaches the second group, and then obtains the final product,” Sobrado said.

Many fungal species make this compound naturally, and it’s relatively new in the biochemistry field to research how to synthesize these processes at a large scale. According to the researchers, the reaction mechanism and the actual chemistry that takes place on the involved nitrogen atom is completely novel from other publications.

“This publication lays the foundation to utilize the enzyme to synthesize the natural products,” Johnson said. “The improvements make this process much more marketable. Eventually, we could get a drug containing one of these compounds or something similar to it to the market.”

This article is republished from the Virginia Tech News page. Read the original .

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Max Esterhuizen
Max Esterhuizen

Max Esterhuizen is a communications and marketing specialist who has spent his career in higher education and in sports journalism. As the assistant director for communications and marketing for the College of Agriculture and Life Sciences at Virginia Tech, Max tells and shares stories inside the college, AREC, and Virginia Cooperative Extension. He also helps lead the Office of Communications and Marketing in a digital-first strategy that aligns with the college’s advancement priorities and helps promote the research and academics of the college as well as the impact of and . While in the college, Max has served as the editor of the college’s flagship publication, which has won national awards and landed media placements in outlets ranging from NPR’s Science Friday to Rolling Stone.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Can a hair-loss drug prevent heart disease?
Journal News

Can a hair-loss drug prevent heart disease?

Sept. 17, 2024

With the approved medication finasteride, researchers in Illinois may have found a new way to kill two birds with one stone.

These proteins have been secretly managing your cells
News

These proteins have been secretly managing your cells

Sept. 15, 2024

Scientists have long known that histones spool DNA and help regulate genes. They may be doing a lot more.

At the Salton Sea, uncovering the culprit of lung disease
News

At the Salton Sea, uncovering the culprit of lung disease

Sept. 14, 2024

Scientists have long suspected a link between the dust and poor respiratory health. According to recent findings, the prime suspect is a naturally occurring toxin.

From the journals: MCP
Journal News

From the journals: MCP

Sept. 13, 2024

The importance of sharing proteomics data. Detecting nitrotyrosine-containing proteins. Analyzing yeast proteasomes. Read about these recent articles.

Using a network to snare the cause of kidney disease
Journal News

Using a network to snare the cause of kidney disease

Sept. 10, 2024

A microfluidic device that mimics blood capillaries may help in early detection, and proper measures could reduce the risk of renal failures.

All about cholesterol
News

All about cholesterol

Sept. 8, 2024

The latest science on how blood levels of HDL, LDL and more relate to cardiovascular health.