Â鶹´«Ã½É«ÇéƬ

Observance

Research roundup: Olympics edition

A snapshot of science relevant to sports in the spotlight at the Tokyo Games
Courtney Chandler
July 23, 2021

The Olympics are a remarkable display of athleticism and performance. Science plays a role in almost every aspect of this spectacle, from athlete training regimens to testing for infectious diseases and performance-enhancing substances. In anticipation of the summer Olympic games coming up in Tokyo, here are a few highlights of recent research articles related to exercise, personal data and drugs.

 

Lipid regulation of oxygen response

High-intensity activities, such as those performed by Olympic athletes, can leave muscles lacking an adequate amount of oxygen. This oxygen debt, called hypoxemia, leads to a series of cellular changes coordinated by hypoxia-inducible factor (HIF) transcription factors. HIF is known as the master regulator of oxygen homeostasis and can activate expression of genes involved in energy metabolism and blood vessel development.

It was thought that oxygen levels were the main regulators of HIF activity. Yet in a in the Journal of Biological Chemistry, researchers from Johns Hopkins University showed that lipoproteins also can regulate HIF activity. In the absence of oxygen, fatty acids derived from lipoproteins can lead to activation of downstream HIF targets. This study introduces fatty acids as a previously undescribed physiological modulator of HIF.

Although the authors didn’t address the implications their research may have on athlete performance, a highlighted HIF stabilizers as a potential new class of performance-enhancing drugs. More research is needed to understand if (and how) lipid regulation of HIF is related to athletic performance.

Personal data and plasma testing

COVID-19 may be one of the biggest threats to the 2021 Games, but the SARS-Cov-2 virus will be only one among a long list of things officials will be diligently testing for and tracking. Athletes will have to also submit to tests for performance-enhancing drugs or certain hormone levels.

One way this may be done is by testing plasma, the liquid part of blood. Researchers have used plasma proteomics to identify proteins associated with performance-enhancing substances. But two recent articles in the journal Â鶹´«Ã½É«ÇéƬ & Cellular Proteomics raise concerns about the supposed patient safety of this approach. , researchers from the Max Planck Institute of Biochemistry in Germany found that plasma proteomes can be used to re-identify individuals even if samples are deidentified. The plasma data also can be used to derive potentially sensitive information, such as pregnancy status or ethnicity. In a by the same research group, the authors argue clinicians need to consider the bioethics surrounding deriving information from plasma samples.

Defining how glucocorticoids stop inflammation

Glucocorticoids are anti-inflammatory drugs used to treat a range of diseases, including autoimmune diseases. They’re also , with anti-doping officials concerned about how their long-term use may enhance athlete performance. Although glucocorticoids have many legitimate uses and the performance-enhancing effects of their sustained use aren’t entirely clear, athletes are routinely tested for this class of drugs.

In a in the Journal of Biological Chemistry, researchers from National Jewish Health in Denver took a deeper look at how glucocorticoids signal through the glucocorticoid receptor to repress the expression of inflammatory genes. Based on their data, they proposed a two-part model. First, glucocorticoid receptor signaling induces expression of genes that in turn rapidly repress the expression of inflammatory genes. A subset of these genes induced by glucocorticoid receptor signaling then participate in a secondary phase of repression of inflammatory gene expression. These secondary genes include transcription factors that coordinate the immune response, such as NF-kB. The convergence of these gene expression regulators leads to termination of inflammation and promotion of tissue repair.

The authors did not address how (or if) their research would have impact on athletes but did highlight their use as anti-inflammatory treatments for COVID-19 patients. More work would need to be done to better understand how the anti-inflammatory and tissue repair effects of sustained glucocorticoid use could affect athlete performance.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Courtney Chandler

Courtney Chandler is a biochemist and microbiologist in Baltimore, Md., and a careers columnist for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Elucidating how chemotherapy induces neurotoxicity
Award

Elucidating how chemotherapy induces neurotoxicity

Dec. 2, 2024

Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
News

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks

Nov. 30, 2024

This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.

The decision to eat may come down to these three neurons
News

The decision to eat may come down to these three neurons

Nov. 28, 2024

The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.

Curiosity turned a dietitian into a lipid scientist
Award

Curiosity turned a dietitian into a lipid scientist

Nov. 27, 2024

Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

From receptor research to cancer drug development: The impact of RTKs
Award

From receptor research to cancer drug development: The impact of RTKs

Nov. 26, 2024

Joseph Schlessinger will receive the ASBMB Herbert Tabor Research Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.