Â鶹´«Ã½É«ÇéƬ

News

These proteins have been secretly managing your cells

Scientists have long known that histones spool DNA and help regulate genes. They may be doing a lot more.
Viviane  Callier
By Viviane Callier
Sept. 15, 2024

Every second, as we breathe, sleep, eat and go about our lives, millions of biochemical reactions are happening in our cells. Among the hurly burly of chemical exchanges are ones that attach small carbon molecules onto (or remove them from) proteins, fats, DNA and more. Adding or taking away these small molecules is essential for many reactions that enable cells to survive, grow and divide.

Perhaps the most interesting and well-studied target of these additions and subtractions lies within the bustling nucleus, where various enzymes attach or remove two small molecules — methyl groups and acetyl groups — onto histones, the protein spools around which our DNA is wrapped.

For decades, adding or removing methyl or acetyl groups to histones was thought to be key to when and where .

But accumulating evidence shows that this is only part of the story. Although putting methyl and acetyl groups on histones is closely linked with activity of nearby genes in some places in the genome, in many other regions it has no impact at all. This suggests that regulating gene activity is not the only function of these histone decorations — perhaps not even the main one.

The histone proteins of complex cells are named H2A, H2B, H3 and H4. They are assembled into groups of eight, around which a length of DNA is wrapped. This structure, called a nucleosome, repeats along the length of a chromosome. Histones have long tails onto which metabolites like acetyl and methyl groups can be added by enzymes.
The histone proteins of complex cells are named H2A, H2B, H3 and H4. They are assembled into groups of eight, around which a length of DNA is wrapped. This structure, called a nucleosome, repeats along the length of a chromosome. Histones have long tails onto which metabolites like acetyl and methyl groups can be added by enzymes.

In fact, emerging research suggests that these modifications to histones have key roles in the cell’s biochemical processes — its metabolism — functioning as a way for the cell to deal with small carbon molecules that are produced during biochemical reactions.

Researchers propose that for acetyl groups (made of two carbons, three hydrogens and one oxygen), the that the cell can draw on when it needs more acetyls for chemical reactions.

And for methyl groups (one carbon atom and three hydrogens), they suggest that the , where methyls can be put so they don’t gum up chemical reactions. Without this sink, many molecules that need to lose a methyl group to proceed to the next step in a biochemical pathway stall out, causing problems for the cell.

Histones were once viewed as mere structural scaffolding for genes: something that could . Then they were seen as involved in gene control — either facilitating or blocking the unfolding of DNA that enables it to be copied. Now, if the new research pans out, they will also prove to be deeply intertwined with the metabolic workings of the cell.

And this, scientists say, may help to reveal how and why histones evolved in the first place.

Cells need places to deposit methyl groups — a methyl sink — so that metabolism does not gum up. In this diagram, a chemical called SAM donates a methyl group to a methyl sink, allowing the biochemical pathway for making the amino acid cysteine to proceed. If SAM is prevented from donating its methyl group, the pathway slows to a trickle and the result is a cysteine deficiency in the cell. Researchers propose that histones act as these important sinks.
Cells need places to deposit methyl groups — a methyl sink — so that metabolism does not gum up. In this diagram, a chemical called SAM donates a methyl group to a methyl sink, allowing the biochemical pathway for making the amino acid cysteine to proceed. If SAM is prevented from donating its methyl group, the pathway slows to a trickle and the result is a cysteine deficiency in the cell. Researchers propose that histones act as these important sinks.

Signaling times of plenty

More than a decade ago, UT Southwestern biochemist was growing yeast cells in his lab when he saw something interesting: The . Gene activity and metabolic activity were changing in a coordinated way.

Tu also saw that when genes involved in cell growth were at their peak activity, this coincided with high numbers of acetyl groups stuck on their histones. And when the genes went silent in the next phase of the cell cycle, the acetyl groups went away. “That was very exciting,” Tu says.

It was exciting because acetyl groups are produced by the — the cell’s power-generating organelle. Acetyl groups are used by the cell to make molecules like fatty acids that are used for energy or to build cell membranes. What seemed to be happening was that acetyls were serving as , with lots of available energy and chemical building blocks. By sticking onto the histones, they were ramping up activity of genes involved in cell growth. It makes sense, after all, to grow and divide during times of plenty.

Tu also saw signs that the acetyls on histones could also act as a bank — a source of energy for the cell to draw on when times became leaner. When cells were starved, he observed, the amount of an important chemical called acetyl-CoA — which is central in energy generation — decreased in the cell. To make energy, the cells consumed acetyl groups that had detached from the histones. The acetyl groups that remained were .

This illustration depicts a model for the movement of acetyl groups during different cell conditions. When energy is abundant and mitochondria are running at full speed, acetyl groups are plentiful and become attached to histone tails on genes that promote growth. When food becomes scarce, the cell consumes these acetyl groups for energy. The remaining acetyl groups are redistributed to activate genes involved in increasing amounts of acetyl CoA in the cell.
This illustration depicts a model for the movement of acetyl groups during different cell conditions. When energy is abundant and mitochondria are running at full speed, acetyl groups are plentiful and become attached to histone tails on genes that promote growth. When food becomes scarce, the cell consumes these acetyl groups for energy. The remaining acetyl groups are redistributed to activate genes involved in increasing amounts of acetyl CoA in the cell.

Other work by Tu’s group suggests that histones may play an even more central role in metabolic pathways, this time involving methyl groups. Again in yeast, the scientists studied a chemical that carries methyl groups around — its name is SAM for short. When SAM gives up a methyl group, it turns into a chemical that is needed to make the amino acid cysteine. But when the cell doesn’t have a place to give up its methyl groups to, too little cysteine gets made, affecting the cell’s ability to grow. Histones serve as these methyl group receivers.

Keeping metabolism humming

More evidence for a metabolic role of histones comes from a 2023 study in which University of Oxford biochemist and his colleague examined a whole host of different enzymes that all add methyl groups to histones.

Each enzyme puts methyl groups on at a unique place on the histone — a floppy part called the histone tail. Depending on where the methyls are added, the effect can be associated with activated gene activity, suppressed gene activity or no change at all. Sarkies reasoned that, if one is simply trying to get methyl groups out of the way so that metabolism can proceed, what matters is the sum activity of all of these enzymes –– not any individual enzyme or a particular effect on a nearby gene.

This is exactly what his team saw when they . Each cell line had raised or lowered the activity of different combinations of those methylating enzymes, so they could deposit methyl groups on histones to tuck them out of the way and keep metabolism proceeding apace.

The scientists also found that many of the methylating enzymes were under the influence of a gene called Rb known for its role in suppressing cancer (it is often mutated in cancer cells). This suggested to Sarkies that Rb plays a central role in increasing or decreasing the rate at which methyl groups are deposited on histones and thus regulating biochemical pathways and growth.

“What we discovered is that the cell uses histone methylation not just to regulate genes, but to regulate metabolism,” Sarkies says.

Yet more possibilities

Researchers have also recently learned that histones can sometimes involve themselves in other aspects of cell biochemistry. In a study published in 2017, chromatin biologist ’s team at the Josep Carreras Leukaemia Research Institute in Barcelona showed that a type of histone called macroh3A1.1 , which is essential in many biochemical reactions. This leaves more NAD+ around for the power-generating mitochondria to use.

And University of California, Los Angeles, biochemist ’s team showed in 2020 that that convert oxidized copper ions (Cu2+) to reduced copper ions (Cu1+). Reduced copper ions are the form required by the mitochondria to produce energy. These ions would have been hard to come by at the dawn of the evolution of complex, eukaryotic cells, like our own, because copper was oxidized as levels of oxygen rose in the atmosphere.

As they uncover this histone-metabolism link, researchers are also speculating on how the relationship emerged to begin with.

They note that in microbes called archaea — from which eukaryotic cells are thought to have evolved — there is a great variety of histones. But very few of these have the floppy tails that our own histones have, onto which the methyl and acetyl marks are placed. So scientists are interested in understanding how histones may have functioned in our archaeal ancestors.

Most histones of single-celled life forms called archaea have no tails or short tails. But the histones of eukaryotic cells like our own have long, floppy tails on which the cell attaches various metabolites.
Most histones of single-celled life forms called archaea have no tails or short tails. But the histones of eukaryotic cells like our own have long, floppy tails on which the cell attaches various metabolites.

They float a variety of possibilities. Kurdistani suggests that the early role of archaeal histones could have been to produce those precious reduced copper ions. Chromatin biologist of Imperial College in London, who studies the evolution of histones in archaea, suggests that archaeal histones could help to . Histones might also have protected the archaeal DNA from viruses seeking to insert themselves into it, Warnecke adds.

Later on, after the ancestor of today’s eukaryotes appeared some 1.5 billion years ago, the histones evolved longer tails that were chemically modified in a variety of ways, including by acetyl and methyl groups. It’s possible, Tu says, that such modifications arose to manage the metabolites produced by the mitochondria in those early eukaryotes. Some chemicals produced in the mitochondria are highly reactive and could spontaneously stick to — and damage — important molecules like DNA. Maybe the cell evolved enzymes to remove these small carbon molecules from places where they would be harmful and stick them instead in places like histone tails where they would cause no harm.

Later on, the cell could have become dependent on these modifications of histones for their metabolic regulation.

And later still? The story of the evolution of histones appears to be one of repurposing. If cells first stumbled into a way to regulate their metabolism with histones, Sarkies says, a similar process could have led to using them to control genes. For histones, he suggests, “metabolic regulation is more fundamental than gene regulation.”

This article is reprinted from . Read the original.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Viviane  Callier
Viviane Callier

Viviane Callier is a freelance science writer.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Elucidating how chemotherapy induces neurotoxicity
Award

Elucidating how chemotherapy induces neurotoxicity

Dec. 2, 2024

Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
News

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks

Nov. 30, 2024

This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.

The decision to eat may come down to these three neurons
News

The decision to eat may come down to these three neurons

Nov. 28, 2024

The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.

Curiosity turned a dietitian into a lipid scientist
Award

Curiosity turned a dietitian into a lipid scientist

Nov. 27, 2024

Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

From receptor research to cancer drug development: The impact of RTKs
Award

From receptor research to cancer drug development: The impact of RTKs

Nov. 26, 2024

Joseph Schlessinger will receive the ASBMB Herbert Tabor Research Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.