Â鶹´«Ã½É«ÇéƬ

News

Gene discoveries could help prevent deadly coronary artery disease

Josh Barney
By Josh Barney
Oct. 21, 2023

An international team of scientists has identified nearly a dozen genes that contribute to calcium buildup in our coronary arteries that can lead to life-threatening coronary artery disease, a condition responsible for up to one in four deaths in the United States. Doctors may be able to target these genes with existing medications — or possibly even nutritional supplements — to slow or halt the disease’s progression. The researchers have published in the journal Nature Genetics. 

“By sharing valuable genotype and phenotype datasets collected over many years, our team was able to uncover new genes that may foreshadow clinical coronary artery disease,” said researcher Clint L. Miller, PhD, of the University of Virginia School of Medicine’s Center for Public Health Genomics. “This is a critical first step in identifying the biological mechanisms to target for primary prevention of coronary artery disease.”

Emily Faith Morgan, UVA University Communications

Even before people develop clinical atherosclerotic coronary artery disease, doctors can detect calcium buildup inside the walls of the coronary arteries using non-invasive computed tomography (CT) scans. This reliable measure of subclinical coronary atherosclerosis strongly predicts future cardiovascular events such as heart attacks or strokes, leading causes of death globally. This calcium accumulation is also linked to other age-related diseases, such as dementia, cancer, chronic kidney disease and even hip fractures.

Despite the known role of genetics in coronary calcium buildup, only a handful of contributing genes had been identified. So Miller and his collaborators were eager to identify new genetic factors that influence our risk for coronary calcium buildup.

They did this by analyzing data collected from more than 35,000 people of European and African ancestry around the world. This was the largest such “meta-analysis” yet conducted to understand the genetic basis of coronary artery calcification.

“Coronary artery calcification reflects the vessel’s accumulation of lifetime exposure to risk factors,” Miller said. “While previous studies from over a decade ago identified a handful of genes, it was clear that larger and more diverse studies would be necessary to begin to identify the pathways underlying coronary artery calcification.”

By combining several statistical analysis methods, the scientists identified more than 40 candidate genes at 11 different locations on our chromosomes linked to coronary artery calcification. Eight of these locations had not been previously connected to coronary calcification at all, and five were not yet reported for coronary artery disease. Genes at these locations play important roles in determining the mineral content of our bones and regulate key metabolic pathways in the formation of calcium deposits, among other functions.

One of the genes the scientists identified, ENPP1, is altered in rare forms of arterial calcification in infants. The researchers also identified genes in the adenosine signaling pathway, which is known to suppress arterial calcification.

To validate their findings, the scientists conducted gene queries and experimental studies in human coronary artery tissues and smooth muscle cells and demonstrated direct effects on calcification and related cellular processes.

Now that the researchers have revealed the genes’ roles in coronary artery calcification, scientists can work to develop drugs (or identify existing ones) that can target the genes or encoded proteins to modulate the calcification process. Some of the promising new targets may even be susceptible to dietary changes or nutrient supplementation, such as with Vitamin C or D.

While additional research needs to be done to determine how best to target these genes and affected pathways, Miller says the new discoveries could set the stage for improved risk stratification or early interventions that prevent the progression of coronary artery disease before it can take hold. That could be a game-changer for treating a disease responsible for more than 17 million deaths annually around the world.

“This interdisciplinary collaboration reveals the power of meta-analyses for an understudied and clinically relevant measurement,” said Miller, of UVA’s Departments of Biochemistry and Â鶹´«Ã½É«ÇéƬ Genetics and Public Health Sciences. “We look forward to continued progress in translating these preliminary findings to the clinic, and also to identifying additional genes that could generalize risk prediction across more diverse populations.”

This article was first published by UVA Today. 

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Josh Barney
Josh Barney

Josh Barney writes about medical discovery at UVA Health and curates UVA's .

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Elucidating how chemotherapy induces neurotoxicity
Award

Elucidating how chemotherapy induces neurotoxicity

Dec. 2, 2024

Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
News

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks

Nov. 30, 2024

This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.

The decision to eat may come down to these three neurons
News

The decision to eat may come down to these three neurons

Nov. 28, 2024

The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.

Curiosity turned a dietitian into a lipid scientist
Award

Curiosity turned a dietitian into a lipid scientist

Nov. 27, 2024

Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

From receptor research to cancer drug development: The impact of RTKs
Award

From receptor research to cancer drug development: The impact of RTKs

Nov. 26, 2024

Joseph Schlessinger will receive the ASBMB Herbert Tabor Research Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.