Â鶹´«Ã½É«ÇéƬ

Journal News

How do diet and lipoprotein levels affect heart health

Seema Nath
Oct. 23, 2024

Cardiovascular diseases are among the leading causes of death globally, taking an estimated . An important risk factor of heart disease is an unhealthy diet leading to overweight and obesity, high blood pressure and increased levels of glucose and lipids in blood. Drugs that help manage body weight have clinical value but do not help prevent premature deaths. Hence, scientists seek ways to identify and treat individuals at higher risk of heart disease.

Low-density lipoprotein particles transport cholesterol, phospholipids, triglycerides and certain vitamins in blood plasma. A single LDL particle contains 3,000 to 6,000 fat molecules and a single apolipoprotein B molecule, a large protein (blue), building the surface with phospholipids and cholesterol molecules (orange).
/iStock
Low-density lipoprotein particles transport cholesterol, phospholipids, triglycerides and certain vitamins in blood plasma. A single LDL particle contains 3,000 to 6,000 fat molecules and a single apolipoprotein B molecule, a large protein (blue), building the surface with phospholipids and cholesterol molecules (orange).

Increased levels of triglycerides and small low-density lipoproteins, or LDL, and low level of high-density lipoproteins, or HDL are markers of atherogenic dyslipidemia, a metabolic condition that builds plaques in the arteries, leading to heart diseases. Previously, cross-sectional studies have shown a correlation between high triglyceride levels and soluble LDL receptor, or sLDLR.

Ronald Krauss and his group at the University of California, San Francisco in collaboration with Christopher Gardner’s team in Stanford University recently showed dynamic changes in lipids and lipoproteins in conjunction with sLDLR; was published in the Journal of Lipid Research.

Krauss is interested in understanding the mechanisms regulating plasma lipoprotein metabolism that may impact cardiovascular disease risk and discovering sLDLR as an important component that impacts it. The Krauss lab uses ion mobility analysis to subdivide fractions of various densities of lipoproteins into narrow intervals of their respective subclasses. His team used this technique to study the correlation between lipoprotein particles and cardiometabolic risk, a lipid measure of heart disease risk.

Gardner provided samples from Diet Intervention Examining the Factors Interacting with Treatment Success, or DIETFITS, a study in which people were given either a healthy low-fat or low-carbohydrate diet to determine how lipid and lipoprotein fractions influence cardiometabolic risk. The researchers investigated the cross-sectional and longitudinal relationship of lipids, lipoproteins related to the level of sLDLR and triglyceride with a baseline of six months.

According to Krauss, using principal component analysis, his team showed that the level of sLDLR is tightly regulated to these other lipid measurements. The study population was limited, so this study must be replicated to make generalizations about the conclusions.

It has already been shown that he protease, membrane type 1–matrix metalloproteinase, or MT1-MMP, cleaves the ligand binding domain of sLDLR capable of binding to very low-density lipoprotein, or VLDL, and LDL particle and increases the level of sLDLR in plasma.

“The work is clinically and scientifically important for developing new therapeutic approaches to either target the protease and/or other mechanisms to inhibit the cleaving of LDLR,” Krauss said. “As the free domain of LDLR circulating in plasma acquires new function by binding to VLDL, mechanisms to directly stop the association of LDLR with VLDL could also be potential measurement to lower the atherogenic dyslipidemia.”

Krauss said the study opens new avenues to explore “how the soluble LDLR achieves this new feature by unknown conformational changes.”

“MT1-MMP is thought to be activated by unknown inflammatory signaling pathways,” he said, “which also needs further investigation along with its mode of interaction with sLDLR.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Seema Nath

Seema Nath is a postdoctoral research fellow at the University of Texas Health Science Center at San Antonio. She is an ASBMB volunteer contributor.

Related articles

From the journals: JLR
Swarnali Roy
From the Journals: JLR
Sephra Rampersad
From the journals: JLR
Sephra Rampersad
From the journals: JLR
Poornima Sankar
From the journals: JLR
Swarnali Roy
From the journals: JLR
Preeti Karwal

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

We are family: Tracing the evolution of animals
News

We are family: Tracing the evolution of animals

Oct. 20, 2024

To understand the origins of muticelled life, researchers are studying a motley assortment of simpler animal relatives. The commonalities they’re unearthing offer a trove of clues about our mutual past.

3D shapes of viral proteins point to previously unknown roles
News

3D shapes of viral proteins point to previously unknown roles

Oct. 19, 2024

A research team led by Jennifer Doudna has harnessed computational and deep-learning tools to predict the shapes of nearly 4,500 species that infect animals and humans.

From the journals: MCP
Journal News

From the journals: MCP

Oct. 18, 2024

Microglia EVs as biomarkers for neuronal diseases. Automated workflow for single-cell proteomics. Circadian rhythmic protein analysis in tissues. Read about these recent MCP papers.

Bridging the gap – enhancing and unifying bone RNA-seq data
Journal News

Bridging the gap – enhancing and unifying bone RNA-seq data

Oct. 17, 2024

Researchers aimed to increase the number of osteoblasts and osteocytes collected and combine their data with other studies to help standardize nomenclature.

What I’ve learned about water, aging and protein quality control
Essay

What I’ve learned about water, aging and protein quality control

Oct. 16, 2024

Alice Liu thought an increase in heat shock protein chaperones would prevent misfolding in Huntington’s disease proteins. The results surprised her, and water was the key.

Helping mitochondria run smoothly may protect against Parkinson’s disease
News

Helping mitochondria run smoothly may protect against Parkinson’s disease

Oct. 13, 2024

As the powerhouse of the cell, mitochondria lie at the intersection of many essential biochemical pathways. When they go awry, neurodegenerative diseases can result.