Â鶹´«Ã½É«ÇéƬ

Journal News

Receptor regulation clues may scratch an itch

Anna Crysler
Nov. 14, 2023

Whether you’ve been stung by an insect or suffer from allergies, most people have experienced itchy skin, which usually can be relieved with time or simple remedies. However, for certain patients with liver disease, an intense itching sensation, known as cholestatic pruritis — the medical term for itch — often does not respond to standard treatments.

This predicted complex formation between MRGPRX4 (maroon) and RAMP2 (green) was generated with AlphaFold-Multimer and interacting residues shown as surfaces were calculated by PDBePISA.
This predicted complex formation between MRGPRX4 (maroon) and RAMP2 (green) was generated with AlphaFold-Multimer and interacting residues shown as surfaces were calculated by PDBePISA.

Thomas Sakmar’s lab at the Rockefeller University uses biochemical and biophysical methods to study transmembrane signal transduction by G protein-coupled receptors. GPCRs play an important role in human physiology; they make up the largest family of membrane proteins and mediate many signaling pathways. Therefore, these receptors are frequent drug targets for a wide variety of diseases and disorders such as cancer, depression, hypertension and more.

In a recent paper in the Journal of Biological Chemistry, Sakmar and his team write about their work on the regulation of a particular GPCR through receptor activity–modifying protein 2, or RAMP2. This receptor, mas-related GPCR subtype X4, or MRGPRX4, is associated with cholestatic itch and is present in the sensory neurons of the skin.

“Our research is unique in that it illustrates a role for RAMPs in MRGPRX4 biology,” Sakmar said. “Since GPCRs represent the molecular targets of approximately one-third of current Food and Drug Administration-approved drugs, a better understanding of GPCR regulation can lead to the development of more potent and selective drugs for a large range of diseases.”

The Sakmar lab had already collaborated to create a multiplexed screening platform to better understand and explore how commonly expressed GPCRs interact with RAMPs. With this technology they identified, for the first time, MRGPRX4 interacting with RAMP2, which they further characterized using pharmacological and computational methods.

In addition to characterizing the MRGPRX4–RAMP2 complex, Sakmar’s team studied how bile acids can activate the receptor. The slowing or stopping of the flow of bile from the liver, known as cholestasis, is believed to cause intense itching in patients with cholestatic disorders. Bile acids are elevated in patients with liver disease, so, taken together with the newly discovered MRGPRX4–RAMP2 interaction, this research improves a broader understanding of the role MRGPRX4 plays in cholestatic itch.

Researchers need to understand the regulation of GPCRs to elucidate how therapies act on these receptors, Sakmar said. “Our discovery that many GPCRs, including MRGPRX4, are regulated by RAMPs might improve drug discovery paradigms, and it is possible that our work might lead to new drugs to treat cholestatic itch or minimize the chance that a drug candidate might cause itch as a side effect.”

The lab plans to take their findings to the next level by increasing the depth and breadth of their work, Sakmar said. “We plan to study the MRGPRX4–RAMP2 interaction in primary skin cells to gain a better understanding of how this protein–protein interaction affects the pharmacology of MRGPRX4 in a highly physiologically relevant environment.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Anna Crysler

Anna Crysler holds a B.A. in biochemistry from Albion College and is a is a Ph.D. student in bioengineering at the University of Pennsylvania. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Elucidating how chemotherapy induces neurotoxicity
Award

Elucidating how chemotherapy induces neurotoxicity

Dec. 2, 2024

Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
News

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks

Nov. 30, 2024

This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.

The decision to eat may come down to these three neurons
News

The decision to eat may come down to these three neurons

Nov. 28, 2024

The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.

Curiosity turned a dietitian into a lipid scientist
Award

Curiosity turned a dietitian into a lipid scientist

Nov. 27, 2024

Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

From receptor research to cancer drug development: The impact of RTKs
Award

From receptor research to cancer drug development: The impact of RTKs

Nov. 26, 2024

Joseph Schlessinger will receive the ASBMB Herbert Tabor Research Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.