AI generates proteins with exceptional binding strength
A reports an AI-driven advance in biotechnology with implications for drug development, disease detection, and environmental monitoring. Scientists at the at the University of Washington School of Medicine used software to create protein molecules that bind with exceptionally high affinity and specificity to a variety of challenging biomarkers, including human hormones. Notably, the scientists achieved the highest interaction strength ever reported between a computer-generated biomolecule and its target.
Senior author David Baker, professor of biochemistry at UW Medicine, Howard Hughes Medical Institute investigator, and recipient of the 2023 Frontiers of Knowledge Award in Biology and Biomedicine, emphasized the potential impact: "The ability to generate novel proteins with such high binding affinity and specificity opens up a world of possibilities, from new disease treatments to advanced diagnostics."
The team, led by Baker Lab members Susana Vazquez-Torres, Preetham Venkatesh, and Phil Leung, set out to create proteins that could bind to glucagon, neuropeptide Y, parathyroid hormone, and other helical peptide targets. Such molecules, crucial in biological systems, are especially difficult for drugs and diagnostic tools to recognize because they often lack stable molecular structures. Antibodies can be used to detect some of these medically relevant targets but are often costly to produce and have limited shelf lives.
"There are many diseases that are difficult to treat today simply because it is so challenging to detect certain molecules in the body. As tools for diagnosis, designed proteins may offer a more cost-effective alternative to antibodies," explained Venkatesh.
The study introduces a novel protein design approach that uses advanced deep-learning methods. The researchers present a new way of using RFdiffusion, a generative model for creating new protein shapes, in conjunction with the sequence-design tool ProteinMPNN. Developed in the Baker Lab, these programs allow scientists to create functional proteins more efficiently than ever before. By combining these tools in new ways, the team generated binding proteins by using limited target information, such as a peptide's amino acid sequence alone. The broad implications of this "build to fit" approach suggest a new era in biotechnology in which AI-generated proteins can be used to detect complex molecules relevant to human health and the environment.
"We're witnessing an exciting era in protein design, where advanced artificial intelligence tools, like the ones featured in our study, are accelerating the improvement of protein activity. This breakthrough is set to redefine the landscape of biotechnology," noted Vazquez-Torres.
In collaboration with the at the University of Copenhagen and the at UW Medicine, the team conducted laboratory tests to validate their biodesign methods. Mass spectrometry was used to detect designed proteins that bind to low-concentration peptides in human serum, thereby demonstrating the potential for sensitive and accurate disease diagnostics. Additionally, the proteins were found to retain their target binding abilities despite harsh conditions including high heat, a crucial attribute for real-world application. Further showcasing the method's potential, the researchers integrated a high-affinity parathyroid hormone binder into a biosensor system and achieved a 21-fold increase in bioluminescence signal in samples that contained the target hormone. This integration into a diagnostic device highlights the immediate practical applications of AI-generated proteins.
The study, which illustrates the confluence of biotechnology and artificial intelligence and sets a new precedent in both fields, appears in Nature with the title “.”
(This article was produced by the University of Washington School of Medicine/UW Medicine.)
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Elucidating how chemotherapy induces neurotoxicity
Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Where do we search for the fundamental stuff of life?
Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.
UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.
The decision to eat may come down to these three neurons
The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.
Curiosity turned a dietitian into a lipid scientist
Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
From receptor research to cancer drug development: The impact of RTKs
Joseph Schlessinger will receive the ASBMB Herbert Tabor Research Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.