Breaking down fat byproducts could lead to healthier aging
The journey of aging brings with it an unavoidable reality for many: an increased accumulation of body fat. Though much of society seems mostly focused on the aesthetics of being overweight, doctors look past any cosmetic concerns to focus on the health implications of fat byproducts in the body.
are one of the molecular building blocks that make up fats. Though essential for various bodily functions, excessive amounts of fatty acids in the body , shortening a person’s by increasing their risk of chronic disease, disrupting metabolic processes and promoting inflammation.
Fatty acids are during medical examinations, such as blood tests measuring your lipid profile. But clinicians and researchers often overlook the other key component of fat despite its potentially harmful effects: , a compound that links fatty acids to make a fat molecule.
Both of these fat byproducts disrupt cellular and organ function, mirroring the effects of aging. In fact, researchers are increasingly seeing obesity as a .
The role that fats play in aging is one of the focuses of my work as a . My and I wondered whether reducing harmful fat byproducts might help slow the aging process and consequently stave off common diseases.
Breaking down fat byproducts
In studying ways to extend the life span and improving the health at late age of lab animals, my colleagues and I saw a : All the anti-aging interventions we tested led to reduced glycerol levels.
For instance, when placed on a calorie-restricted diet, the nematode Caenorhabditis elegans . We found that the glycerol levels in the body of these long-lived worms were lower than in shorter-lived worms that were not food restricted. Calorie restriction also responsible for breaking down glycerol, ADH-1, in their intestine and muscles.
We saw similar undergoing dietary restriction or treated with an anti-aging drug called rapamycin. This finding suggests there may be a common mechanism underlying healthy aging across species, with ADH-1 at its core.
We hypothesized that elevated ADH-1 activity promotes health in old age by decreasing harmful levels of glycerol. Supporting this hypothesis were . First, we found that adding glycerol to the diet of worms . By contrast, animals genetically modified to boost levels of the glycerol-busting enzyme ADH-1 had low glycerol levels and remained lean and healthy with longer lives, even on unrestricted diets.
The simple molecular structure and wealth of research on ADH-1 make it an attractive target for developing drugs that boost its activity. My lab’s long-term goal is to explore how compounds that activate ADH-1 affect the health and longevity of both mice and people.
A long-lived society
Anti-aging research generates both excitement and debate. On the one hand, the benefits of are clear. On the other hand, extending life span through healthier aging will likely introduce new societal challenges.
If life spans extending to 120 years become the norm, , including retirement ages and economic models, will need to evolve to accommodate an aging population. Legal and social frameworks regarding the elderly and family care may need revision. The , those with children and living parents and grandparents, might find themselves caring for even more generations simultaneously. Longer lives will require society to rethink and reshape how we integrate and support an increasingly older population in our communities.
Whether through ADH-1 or dietary adjustments, the quest for the solution to healthy aging is not just a medical journey but a societal one.
This article is republished from under a Creative Commons license. Read the .
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Bananapocalypse – the tricky genetics of a devastating fungus
Fusarium oxysporum can infect over 120 plant species. Whether it destroys Cavendish bananas as it did their predecessor depends on the agricultural industry and consumers.
From the journals: MCP
Young proteins are more likely to be degraded. Full automation speeds up sample preparation. Proteomics sheds light on cancer immune suppression. Read about recent MCP papers on these topics.
Modified pea proteins are shaping the future of meat alternatives
University of Minnesota scientists use enzymes to mimic beef texture in plant-based protein.
What makes lager yeast special? Inside the genetics of beer
University of Wisconsin scientists explore a microbe’s cold-tolerance for better brewing.
Gene-mutation pathway discovery paves way for targeted blood cancers therapies
A new study by researchers at the universities of Texas and Chicago explains the enzymatic activity that’s needed for tumor suppression in leukemias and other cancers.
Candy binges can overload your gut microbiome
While most Halloween candies contain lots of sugar, some are better for your gut microbiome than others.