麻豆传媒色情片

Journal News

There's more to cholesterol than meets the eye

When it comes to a role in glaucoma, it鈥檚 all about location, location, location
Sarah May
March 22, 2022

Glaucoma sometimes is called the silent thief in the night, because the eye can be damaged irreversibly before a person experiences any vision loss.

In a healthy eye, tissue called trabecular meshwork controls pressure by draining aqueous humor, the clear fluid filling the space between the cornea and lens. This drainage system clogs up in glaucoma, fluid builds up and the resulting pressure damages the optic nerve that sends visual signals to the brain. In severe cases, the eyes can bulge out.

Glaucoma damages the optic nerve and is a primary cause of irreversible blindness.
Glaucoma damages the optic nerve and is a primary cause of irreversible blindness.

Understanding how trabecular meshwork cells sense and respond to elevated eye pressure — a type of mechanical stress — is a major goal of researchers in David Kri啪aj’s laboratory at the University of Utah. They study a mechanotransducer, a protein that senses and responds to mechanical stress, called transient receptor potential vanilloid 4, or TRPV4. When activated in trabecular meshwork, TRPV4 promotes aqueous humor drainage.

, the researchers reported that a known risk factor for glaucoma, cholesterol, activates TRPV4 in retinal glia cells, which are at the back of the eye. Now, in a recent published in the Journal of Lipid Research, Monika Lakk and colleagues report that cholesterol depletion activates TRPV4 in trabecular meshwork cells at the front of the eye — an unexpected result.

“Cholesterol has been public enemy No. 1 in the eye of the public for a long time due to its dysregulation in cardiovascular, neurologic and metabolic disease, and has been shown to subserve multiple types of inherited and acquired vision loss,” Lakk said.

On the other hand, cholesterol plays a crucial role in maintaining homeostasis. The finding that cholesterol regulates TRPV4 in opposite ways depending on its location (front versus back of the eye) demonstrates this complexity. “Clinical solutions may require a thorough understanding of the local biomechanical and cellular context,” Lakk said.

According to the researchers, increased membrane cholesterol in trabecular meshwork cells may dampen the mechanical stress signals caused by high blood pressure and prevent overstimulation of TRPV4 — a protective mechanism that may become dysfunctional in glaucoma.

By just stretching the trabecular meshwork cells — simulating what happens with glaucoma — the researchers were able to deplete membrane cholesterol, which activates TRPV4.

“This study was an exercise in surprise,” Lakk said. “We were completely unprepared for the finding that membrane lipid composition itself is a function of the biomechanical milieu.”

When a person experiences chronic stress due to conditions such as heart disease and glaucoma, she explained, “The cellular remodeling that takes place may involve the entire body and a myriad of processes and mechanisms that may flow under the radar of investigators focusing on immediate targets.”

The researchers have knocked out the TRPV4 gene in multiple eye cell types in mice and are investigating how these cells, which are unable to sense and respond to mechanical stress, affect eye fluid pressure and vision. Since cholesterol can turn TRPV4 on or off in different parts of the eye, their research suggests that glaucoma patients may benefit from carefully balanced diet regimens.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Sarah May

Sarah May is a scientific writer at the University of Chicago.

Related articles

From the Journals: JLR
Sephra Rampersad
From the journals: JLR
Sephra Rampersad
From the journals: JLR
Poornima Sankar
From the journals: JLR
Swarnali Roy
From the journals: JLR
Preeti Karwal

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Can a hair-loss drug prevent heart disease?
Journal News

Can a hair-loss drug prevent heart disease?

Sept. 17, 2024

With the approved medication finasteride, researchers in Illinois may have found a new way to kill two birds with one stone.

These proteins have been secretly managing your cells
News

These proteins have been secretly managing your cells

Sept. 15, 2024

Scientists have long known that histones spool DNA and help regulate genes. They may be doing a lot more.

At the Salton Sea, uncovering the culprit of lung disease
News

At the Salton Sea, uncovering the culprit of lung disease

Sept. 14, 2024

Scientists have long suspected a link between the dust and poor respiratory health. According to recent findings, the prime suspect is a naturally occurring toxin.

From the journals: MCP
Journal News

From the journals: MCP

Sept. 13, 2024

The importance of sharing proteomics data. Detecting nitrotyrosine-containing proteins. Analyzing yeast proteasomes. Read about these recent articles.

Using a network to snare the cause of kidney disease
Journal News

Using a network to snare the cause of kidney disease

Sept. 10, 2024

A microfluidic device that mimics blood capillaries may help in early detection, and proper measures could reduce the risk of renal failures.

All about cholesterol
News

All about cholesterol

Sept. 8, 2024

The latest science on how blood levels of HDL, LDL and more relate to cardiovascular health.