Â鶹´«Ã½É«ÇéƬ

Annual Meeting

How plants use lipids to protect themselves from freezing

Núria  Negrão
April 29, 2021

Freezing temperatures can kill certain plants, while others adapt to survive cold winters. And a sudden cold snap can damage or kill even winter-hardy plants.

Zachery Shomo, a graduate student at the University of Nebraska–Lincoln, studies how lipids protect plants from freezing and dying. He will present on Friday, 11:15 a.m. EDT, at the 2021 ASBMB Annual Meeting.

Courtesy of Zachery Shomo
Zachery Shomo, a grad student in the Roston lab at the University of Nebraska–Lincoln, is presenting his research on oligogalactolipids at the 2021 ASBMB Annual Meeting.
Courtesy of Zachery Shomo
Zachery Shomo and his fellow researchers simulated snow on an Arabidopsis thaliana plant with ice from the lab’s -80 C freezer.

“We would like to increase the ability of plants to withstand unseasonable climate events,” Shomo said. “In fall, when we have frost that occurs too soon, the plants are experiencing that cold stress before they are acclimated to do so.”

The opposite can happen in early spring when warm weeks might make the plants lose their protective ability.

Shomo works on SFR2, short for Sensitive to Freezing 2, an enzyme that spurs lipid remodeling in response to cold or freezing stress, producing lipids that have multiple sugar residues as a head group. “These lipids are essential for most plants to survive a freezing response, but we don’t know their functional role,” Shomo said.

This is the most interesting part of this project, he said: Researchers know so much about this enzyme, but there is much still to learn about how these lipids function to protect plants from freezing.

Shomo and his colleagues in have a few hypotheses about how SFR2 works to modify the lipid bilayer and protect the plant. The first is that the enzyme uses lipids that are not very good at forming bilayers as a substrate to produce oligogalactolipids, lipids containing two or more galactose molecules as a head group, to take their place. The resulting oligogalactolipids then form a more stable bilayer and protect cells. Another hypothesis is that as the temperature drops, plant cells start to accumulate different chemicals to prevent the liquids in them from freezing, and oligogalactolipids might interact with these as well. A third hypothesis is that these lipids act as spacers, preventing the membranes of different cells from fusing during freezing and keeping the cells’ structure intact.

The researchers found out how SFR2 activity is regulated by temperature. They used mass spectrometry analysis of SFR2 from plants grown at several temperatures (including freezing), which showed that the protein had different phosphorylation profiles at varying temperatures. They then used a mixture of site-directed mutagenesis, in-silico modeling and synthesis of the mutated protein to show phosphorylation of surface amino acids is necessary for SFR2 to function. These experiments showed that SFR2 is activated by the phosphorylation of various amino acids. Their next goal is to identify which specific amino acids have to be phosphorylated for this to happen.

By understanding the metabolic signals that are activated to protect plants from freezing stress, the researchers hope to devise ways to increase cold tolerance in crops.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Núria  Negrão

Núria Negrão is a medical writer and editor at Cactus Communications.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

'You can't afford to be 15 years behind the parasite'
Award

'You can't afford to be 15 years behind the parasite'

Dec. 3, 2024

David Fidock will receive the Alice and C.C. Wang Award in Â鶹´«Ã½É«ÇéƬ Parasitology at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Elucidating how chemotherapy induces neurotoxicity
Award

Elucidating how chemotherapy induces neurotoxicity

Dec. 2, 2024

Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
News

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks

Nov. 30, 2024

This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.

The decision to eat may come down to these three neurons
News

The decision to eat may come down to these three neurons

Nov. 28, 2024

The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.

Curiosity turned a dietitian into a lipid scientist
Award

Curiosity turned a dietitian into a lipid scientist

Nov. 27, 2024

Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.