鶹ýɫƬ

News

Stem cell–derived model offers insights on gene activity and addiction

Matt Shipman
May 13, 2022

Researchers at North Carolina State University have demonstrated that neuron-like cells derived from human stem cells can serve as a model for studying changes in the nervous system associated with addiction. The work sheds light on the effect of dopamine on gene activity in neurons, and offers a blueprint for related research moving forward.

“It is extremely difficult to study how addiction changes the brain at a cellular level in humans — nobody wants to experiment on somebody’s brain,” says , corresponding author of the study and an assistant professor of chemical and biomolecular engineering at NC State. “What we’ve done here demonstrates that we can gain a deep understanding of those cellular responses using neuronlike cells derived from human stem cells.”

At issue is how cells in our nervous system respond to drugs that are associated with substance abuse and addiction. Our bodies produce a neurotransmitter called dopamine. It’s associated with feelings, such as pleasure, that are related to motivation and reward. When neuronal cells in the brain’s “reward pathway” are exposed to dopamine, the cells activate a specific suite of genes, triggering the feelings of reward that can make people feel good. Many drugs — from alcohol and nicotine to opioids and cocaine — cause the body to produce higher levels of dopamine.

“In experiments using rodents, researchers have shown that when relevant neuronal cells are exposed to high levels of dopamine for an extended period of time, they become desensitized — meaning the cells’ gene activation is less pronounced in response to the dopamine,” Keung says. “This is called gene desensitization. However, until now, it hasn’t been possible to do an experimental study using human neuronal cells.”

“Our work here is the first experimental study to demonstrate gene desensitization in human neuronal cells, specifically in response to dopamine,” says , first author of the study and a Ph.D. student at NC State. “We don’t have to infer that it is happening in human cells; we can show that it is happening in human cells.”

In their , Tam and Keung exposed neuronlike cells derived from human stem cells to varying levels of dopamine for varying periods of time. The researchers found that when cells were exposed to high levels of dopamine for an extended period of time, the relevant “reward” genes became significantly less responsive. The work was published in the journal Cells.

Stem cell-derived medium spiny-like neuron morphology highlighted by the green fluorescent protein GFP and neuron marker MAP2 in red.
Courtesy of Ryan Tam
Stem cell–derived medium spinylike neuron morphology highlighted by the green fluorescent protein GFP and neuron marker MAP2 in red.

“This is an interesting finding, but it’s also a proof of concept study,” Tam says. “We’ve demonstrated that gene desensitization to dopamine occurs in human cells, but there is still a lot we don’t know about the nature of the relationship between dopamine and gene desensitization.

“For example, could higher levels of dopamine cause desensitization at shorter time scales? Or could lower levels of dopamine cause desensitization at longer time scales? Are there threshold levels, or is there some sort of linear relationship? How might the presence of other neurotransmitters or bioactive chemicals affect these responses?”

“Those are good questions, which future research could address,” says Keung. “And we’ve demonstrated that these neuronlike cells derived from human stem cells are a good model for conducting that research.”

This article was republished with permission from North Carolina State University. Read the original.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Matt Shipman

Matt Shipman is the research communications lead at North Carolina State University. He is also a freelance writer and communications consultant, a contributor to Health News Review, author of the “” (University of Chicago Press, 2015), and contributor to “” (Yale University Press, 2016).

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How do diet and lipoprotein levels affect heart health
Journal News

How do diet and lipoprotein levels affect heart health

Oct. 23, 2024

Analysis of a dietary study shows that lipid profiling may prove beneficial — and healthy dietary intervention may reduce risk.

We are family: Tracing the evolution of animals
News

We are family: Tracing the evolution of animals

Oct. 20, 2024

To understand the origins of muticelled life, researchers are studying a motley assortment of simpler animal relatives. The commonalities they’re unearthing offer a trove of clues about our mutual past.

3D shapes of viral proteins point to previously unknown roles
News

3D shapes of viral proteins point to previously unknown roles

Oct. 19, 2024

A research team led by Jennifer Doudna has harnessed computational and deep-learning tools to predict the shapes of nearly 4,500 species that infect animals and humans.

From the journals: MCP
Journal News

From the journals: MCP

Oct. 18, 2024

Microglia EVs as biomarkers for neuronal diseases. Automated workflow for single-cell proteomics. Circadian rhythmic protein analysis in tissues. Read about these recent MCP papers.

Bridging the gap – enhancing and unifying bone RNA-seq data
Journal News

Bridging the gap – enhancing and unifying bone RNA-seq data

Oct. 17, 2024

Researchers aimed to increase the number of osteoblasts and osteocytes collected and combine their data with other studies to help standardize nomenclature.

What I’ve learned about water, aging and protein quality control
Essay

What I’ve learned about water, aging and protein quality control

Oct. 16, 2024

Alice Liu thought an increase in heat shock protein chaperones would prevent misfolding in Huntington’s disease proteins. The results surprised her, and water was the key.