Â鶹´«Ã½É«ÇéƬ

News

Biobots arise from the cells of dead organisms

Pushing the boundaries of life, death and medicine
Peter A. Noble Alex Pozhitkov
By Peter A. Noble and Alex Pozhitkov
Oct. 27, 2024

Life and death are traditionally viewed as opposites. But the emergence of new multicellular life-forms from the cells of a dead organism introduces a “” that lies beyond the traditional boundaries of life and death.

Biobots could one day be engineered to deliver drugs and clear up arterial plaque.
Kriegman et al. 2020/PNAS, CC BY-SA
Biobots could one day be engineered to deliver drugs and clear up arterial plaque.

Usually, scientists consider death to be the as a whole. However, practices such as organ donation highlight how organs, tissues and cells can continue to function even after an organism’s demise. This resilience raises the question: What mechanisms allow certain cells to keep working after an organism has died?

We are researchers who . In our , we describe how certain cells – when provided with nutrients, oxygen, bioelectricity or biochemical cues – have the capacity to with new functions after death.

Life, death and emergence of something new

The third state challenges how scientists typically understand cell behavior. While caterpillars metamorphosing into butterflies, or tadpoles evolving into frogs, may be familiar developmental transformations, there are few instances where organisms change in ways that are not predetermined. Tumors, and cell lines that can indefinitely divide in a petri dish, like , are not considered part of the third state because they do not develop new functions.

However, researchers found that skin cells extracted from deceased frog embryos were able to adapt to the new conditions of a petri dish in a lab, spontaneously reorganizing into multicellular organisms . These organisms exhibited behaviors that extend far beyond their original biological roles. Specifically, these xenobots use their cilia – small, hair-like structures – to navigate and move through their surroundings, whereas in a living frog embryo, cilia are typically used to move mucus.

Xenobots can move, heal and interact with their environment on their own.

Xenobots are also able to perform , meaning they can physically replicate their structure and function without growing. This differs from more common replication processes that involve growth within or on the organism’s body.

Researchers have also found that solitary human lung cells can self-assemble into miniature multicellular organisms that can move around. behave and are structured in new ways. They are not only able to navigate their surroundings but also repair both themselves and injured neuron cells placed nearby.

Taken together, these findings demonstrate the inherent plasticity of cellular systems and challenge the idea that cells and organisms can evolve only in predetermined ways. The third state suggests that organismal death may play a significant role in how life transforms over time.

Diagram A shows an anthrobot building a bridge across a scratched neuron over the course of three days. Diagram B highlights the ‘stitch’ in green at the end of Day 3.
,
Diagram A shows an anthrobot building a bridge across a scratched neuron over the course of three days. Diagram B highlights the ‘stitch’ in green at the end of Day 3.

Postmortem conditions

whether certain cells and tissues can survive and function after an organism dies. These include environmental conditions, metabolic activity and preservation techniques.

Different cell types have varying survival times. For example, in humans, die between 60 and 86 hours after organismal death. In mice, can be regrown after 14 days postmortem, while fibroblast cells can be cultured up to a month or so postmortem.

Metabolic activity plays an important role in whether cells can continue to survive and function. that require a continuous and substantial supply of energy to maintain their function are more difficult to culture than cells with lower energy requirements. Preservation techniques can allow tissue samples such as bone marrow to function similarly to that of living donor sources.

also play a key role in whether cells and tissues live on. For example, researchers have observed a significant increase in the activity of after organismal death, likely to compensate for the loss of . Moreover, factors such as , and the significantly affect tissue and cell viability.

Different cell types have different capacities for survival, including white blood cells.
National Center for Advancing Translational Sciences/Wikimedia
Different cell types have different capacities for survival, including white blood cells.

Factors such as age, health, sex and type of species further shape the postmortem landscape. This is seen in the challenge of culturing and transplanting , which produce insulin in the pancreas, from donors to recipients. Researchers believe that autoimmune processes, high energy costs and the degradation of protective mechanisms could be the reason behind many islet transplant failures.

How the interplay of these variables allows certain cells to continue functioning after an organism dies remains unclear. One hypothesis is that specialized channels and pumps embedded in the outer membranes of cells serve as . These channels and pumps generate electrical signals that allow cells to communicate with each other and execute specific functions such as growth and movement, shaping the structure of the organism they form.

The extent to which different types of cells can undergo transformation after death is also uncertain. Previous research has found that specific genes involved in stress, immunity and are activated after death in , suggesting widespread potential for transformation among diverse cell types.

Implications for biology and medicine

The third state not only offers new insights into the adaptability of cells. It also offers prospects for new treatments.

For example, from an individual’s living tissue to deliver drugs without triggering an unwanted immune response. Engineered anthrobots injected into the body could potentially dissolve arterial plaque in atherosclerosis patients and remove excess mucus in cystic fibrosis patients.

Importantly, these multicellular organisms have a finite life span, naturally degrading after . This “kill switch” prevents the growth of potentially invasive cells.

A better understanding of how some cells continue to function and metamorphose into multicellular entities some time after an organism’s demise holds promise for advancing personalized and preventive medicine.

Article updated to reflect Peter Noble’s current academic affiliation.

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Peter A. Noble
Peter A. Noble

Peter A. Noble is a professor, University of Alabama at Birmingham.

Alex Pozhitkov
Alex Pozhitkov

Alex Pozhitkov is a senior technical lead of Bioinformatics,

Related articles

From the journals: November 2019
John Arnst, Jonathan Griffin, Isha Dey & Dawn Hayward
From the journals: June/July 2018
Sasha Mushegian & Laurel Oldach

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
News

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks

Nov. 30, 2024

This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.

The decision to eat may come down to these three neurons
News

The decision to eat may come down to these three neurons

Nov. 28, 2024

The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.

Curiosity turned a dietitian into a lipid scientist
Award

Curiosity turned a dietitian into a lipid scientist

Nov. 27, 2024

Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

From receptor research to cancer drug development: The impact of RTKs
Award

From receptor research to cancer drug development: The impact of RTKs

Nov. 26, 2024

Joseph Schlessinger will receive the ASBMB Herbert Tabor Research Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.

Scientists around the world report millions of new discoveries every year
Essay

Scientists around the world report millions of new discoveries every year

Nov. 24, 2024

Science is a collaborative endeavor, and international teams have contributed to a huge rise in scientific output.