Dancing with metals: Iron copper and reactive sparks
"Sola dosis facit venenum" or "the dose makes the poison." This timeless adage holds particularly true in the realm of metals and oxidants, where the delicate balance between sufficiency and excess is paramount. Inadequate levels render an organism incapable of proper functioning, while excessive quantities can inflict irreversible harm. However, at the precise dosage, a harmonious symphony resonates within cellular systems.
While iron and copper play crucial roles in the functioning of numerous cellular proteins, excessive amounts can trigger the cell death mechanisms of ferroptosis and cuproptosis, respectively. Although oxidation is essential for vital cellular processes such as protein folding and signal transduction, excessive oxidation can harm cellular components, leading to cell death. How does a cell effectively regulate the availability of these factors and mitigate their toxic effects?
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30.
This compelling question will be addressed at our symposium. Esteemed investigators in the fields of iron, copper and redox biology will cover topics that include organellar redox metabolism and vulnerabilities, mechanisms of metal-induced cell death and metal stress, as well as metal acquisition and dependencies.
Keywords: Copper, iron, redox, metals, reactive oxygen species.
Who should attend: Metalheads and redox biologists, along with individuals keen on delving into the realms of iron, copper and selenium and the intricacies of oxidative stress.
Theme song: by Black Sabbath. No explanation necessary.
This session is powered by .
Redox and metals in biology
Advances in redox homeostasis in biology and disease
°¾±±¹²¹²Ôç Birsoy, Rockefeller University
Jessica Spinelli, University of Massachusetts Chan Medical School
Urbain Weyemi (chair), National Cancer Institute
Elena Piskounova, Weill Cornell Medicine
Iron in redox biology: mechanisms and regulation
Adam Hughes, University of Utah
James Wohlschlegel, UCLA
Sarah-Maria Fendt, VIB–KU Leuven Center for Cancer Biology
Gina DeNicola (chair), Moffitt Cancer Center
Copper in redox biology: From fundamental chemistry to cellular function
Katherine Franz, Duke University
Peter Tsvetkov, Broad Institute of MIT and Harvard
Deborah Fass, Weizmann Institute of Science
Siavash Kurdistani (chair), UCLA
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Elucidating how chemotherapy induces neurotoxicity
Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Where do we search for the fundamental stuff of life?
Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.
UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.
The decision to eat may come down to these three neurons
The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.
Curiosity turned a dietitian into a lipid scientist
Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
From receptor research to cancer drug development: The impact of RTKs
Joseph Schlessinger will receive the ASBMB Herbert Tabor Research Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.