Â鶹´«Ã½É«ÇéƬ

Annual Meeting

MCSs stick the landing

Learn about the Discover BMB 2024 symposium on membrane contact sites
Christopher Beh Jen Liou
By Christopher Beh and Jen Liou
Sept. 15, 2023

Membrane contact sites, or MCSs, represent the ultimate intracellular duct tape — binding organelles together within eukaryotic cells to promote growth. Enabled by tethering proteins, MCSs are a coordinating nexus that fosters intermembrane exchange and signaling.

“The cell, too, has a geography, and its reactions occur in colloidal apparatus, of which the form, and the catalytic activity of its manifold surfaces, must efficiently contribute to the due guidance of chemical reactions.”  — Sir Frederick Gowland Hopkins (Nobel Prize in Physiology or Medicine, 1929)

As conduits for lipid and small metabolite transfer between organelle membranes, MCSs are key regulators of metabolism. As structural elements linking intracellular membranes, MCSs control membrane organization and protect against membrane stresses. As platforms for important signaling receptors, MCSs initiate cellular responses to regulatory or environmental cues.

The recognition of MCSs as key regulators of cell growth is underscored by new discoveries of MCS function in cellular disease and infection.

Keywords: Membrane contact sites, membrane stress, mitochondrial regulation, nonvesicular transport, lipid transport, membrane structure, lipid metabolism, lipid regulation.

Who should attend: Â鶹´«Ã½É«ÇéƬ cell biologists and membrane biochemists who marvel at how membrane dynamics regulates metabolic function and organelle organization.

Theme song: by Lionel Richie

This session is powered by the unsung heroes of membrane and lipid research.

Submit an abstract

Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30.

Membrane contact sites

Regulation of lipid transfer and metabolism at membrane contact sites

 

Hongyuan YangUniversity of Texas Health Science Center at Houston

Jen Liou (chair), University of Texas Southwestern Medical Center

Alexandre ToulmayUniversity of Texas Southwestern Medical Center

Arash BashirullahUniversity of Wisconsin–Madison

Membrane signaling at membrane contact sites

Thomas Simmen (chair), University of Alberta

Jay TanUniversity of Pittsburgh

Alissa WeaverVanderbilt University

Chi-Lun ChangSt. Jude Children's Research Hospital

Specialized membrane contact site functions

Isabelle DerréUniversity of Virginia

Aaron NeimanStony Brook University

Christopher T. Beh (chair), Simon Fraser University

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Christopher Beh
Christopher Beh

Christopher Beh is a professor of molecular genetics and cell biology at Simon Fraser University, Burnaby, Canada.

Jen Liou
Jen Liou

Jen Liou is a scholar in medical research at the University of Texas Southwestern Medical Center, Dallas, Texas.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Can a hair-loss drug prevent heart disease?
Journal News

Can a hair-loss drug prevent heart disease?

Sept. 17, 2024

With the approved medication finasteride, researchers in Illinois may have found a new way to kill two birds with one stone.

These proteins have been secretly managing your cells
News

These proteins have been secretly managing your cells

Sept. 15, 2024

Scientists have long known that histones spool DNA and help regulate genes. They may be doing a lot more.

At the Salton Sea, uncovering the culprit of lung disease
News

At the Salton Sea, uncovering the culprit of lung disease

Sept. 14, 2024

Scientists have long suspected a link between the dust and poor respiratory health. According to recent findings, the prime suspect is a naturally occurring toxin.

From the journals: MCP
Journal News

From the journals: MCP

Sept. 13, 2024

The importance of sharing proteomics data. Detecting nitrotyrosine-containing proteins. Analyzing yeast proteasomes. Read about these recent articles.

Using a network to snare the cause of kidney disease
Journal News

Using a network to snare the cause of kidney disease

Sept. 10, 2024

A microfluidic device that mimics blood capillaries may help in early detection, and proper measures could reduce the risk of renal failures.

All about cholesterol
News

All about cholesterol

Sept. 8, 2024

The latest science on how blood levels of HDL, LDL and more relate to cardiovascular health.