JBC: Seeking an off switch for celiac disease
Celiac disease is an autoimmune disorder that affects, by some estimates, nearly one in 100 people. Celiac symptoms ar triggered by gluten, a protein found in wheat and related plants, but gluten doesn’t act alone to cause the digestive problems that patients suffer. Rather, gluten induces an overactive immune response when it’s modified by the enzyme transglutaminase 2, or TG2, in the small intestine.
published in the Journal of Biological Chemistry identifies an enzyme that turns off TG2, potentially paving the way for new treatments for celiac disease. , a chemical engineering graduate student at Stanford University, led the study.
“Currently, therapies to treat people with celiac disease are lacking,” Yi said. “The best approach right now is just a strict adherence to a lifelong gluten-free diet. Perhaps the reason behind this is our relatively poor understanding of TG2.”
The biochemistry of how TG2 interacts with gluten and induces an immune response has been well studied, but more basic mysteries remain, such as how TG2 behaves in people without celiac disease. , the Stanford professor and director of Stanford Chemistry, Engineering & Medicine for Human Health, who oversaw the new study, has done research showing that TG2 can be active or inactive, depending on the forming or breaking of a specific chemical bond, called a disulfide bond, between two amino acids in the enzyme.
“Even though there’s a lot of transglutaminase 2 protein in the (small intestine), it’s all inactive,” Khosla said. “When it became clear that even though the protein was abundant, its activity was nonexistent in a healthy organ, the question became ‘What turns the protein on, and then what turns the protein off?’”
In 2011, Khosla’s team identified the enzyme that activates TG2 by breaking its disulfide bond. In the new paper, the researchers did experiments in cell cultures and found an enzyme that re-forms this bond, inactivating TG2. This enzyme, ERp57, is known mainly for helping fold proteins inside the cell. When it turns off TG2, it does so outside of cells, raising more questions about its functions in healthy people.
“Nobody really understands how (Erp57) gets outside the cell,” Khosla said. “The general thinking is that it’s exported from the cell in small quantities; this particular observation suggests that it actually does have a biological role outside the cell.”
TG2 is now the first protein known to have a reversible disulfide bond on/off switch of this type.
“This is a very different kind of on-and-off chemistry than the kind that medicinal chemists would (typically) use,” Khosla said.
Understanding this mechanism has led the team to investigate whether any drugs approved by the Food and Drug Administration could target the switch directly. Because previous studies have suggested that lack of TG2 doesn’t seem to affect the health of mice negatively, blocking TG2 is a promising avenue for treating celiac disease patients without requiring lifelong dietary changes.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

A biological camera: How AI is transforming retinal imaging
AI is helping clinicians see a more detailed view into the eye, allowing them to detect diabetic retinopathy earlier and expand access through tele-ophthalmology. These advances could help millions see a clearer future.

AI in the lab: The power of smarter questions
An assistant professor discusses AI's evolution from a buzzword to a trusted research partner. It helps streamline reviews, troubleshoot code, save time and spark ideas, but its success relies on combining AI with expertise and critical thinking.

Training AI to uncover novel antimicrobials
Antibiotic resistance kills millions, but César de la Fuente鈥檚 lab is fighting back. By pairing AI with human insight, researchers are uncovering hidden antimicrobial peptides across the tree of life with a 93% success rate against deadly pathogens.

AI-designed biomarker improves malaria diagnostics
Researchers from the University of Melbourne engineered Plasmodium vivax diagnostic protein with enhanced yield and stability while preserving antibody-binding, paving the way for more reliable malaria testing.

Matrix metalloproteinase inhibitor reduces cancer invasion
Scientists at the Mayo Clinic engineered a TIMP-1 protein variant that selectively inhibits MMP-9 and reduces invasion of triple-negative breast cancer cells, offering a promising tool for targeted cancer research.

Antibiotic sensor directly binds drug in resistant bacteria
Researchers at Drexel University uncover how the vancomycin-resistant bacterial sensor binds to the antibiotic, offering insights to guide inhibitor design that restores antibiotic effectiveness against hospital-acquired infections.